

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 302-306

Novel 1,3-dipropyl-8-(1-heteroarylmethyl-1H-pyrazol-4-yl)-xanthine derivatives as high affinity and selective A_{2B} adenosine receptor antagonists

Elfatih Elzein,^{a,*} Rao Kalla,^a Xiaofen Li,^a Thao Perry,^a Eric Parkhill,^a Venkata Palle,^a Vaibahv Varkhedkar,^a Art Gimbel,^b Dewan Zeng,^b David Lustig,^c Kwan Leung^c and Jeff Zablocki^a

^aDepartment of Bioorganic Chemistry, CV Therapeutics Inc., 3172 Porter Drive, Palo Alto, CA 94304, USA
^bDepartment of Drug Research and Pharmacological Sciences, CV Therapeutics Inc., 3172 Porter Drive, Palo Alto, CA 94304, USA
^cDepartment of Pre-Clinical Development, CV Therapeutics Inc., 3172 Porter Drive, Palo Alto, CA 94304, USA

Received 9 September 2005; revised 29 September 2005; accepted 3 October 2005 Available online 4 November 2005

Abstract—A series of new 1,3-dipropyl-8-(1-heteroarylmethyl-1*H*-pyrazol-4-yl)-xanthine derivatives as A_{2B} -AdoR antagonists have been synthesized and evaluated for their binding affinities for the A_{2B} , A_1 , A_{2A} , and A_3 -AdoRs. 8-(1-((3-phenyl-1,2,4-oxadiazol5-yl)methyl)-1*H*-pyrazol-4-yl)-1,3-dipropyl-1*H*-purine-2,6(3*H*,7*H*)-dione (4) displayed high affinity ($K_i = 1 \text{ nM}$) and selectivity for the A_{2B} -AdoR versus A_1 , A_{2A} , and A_3 -AdoRs (A_1/A_{2B} , A_{2A}/A_{2B} , and A_3/A_{2B} selectivity ratios of 370, 1100, and 480, respectively). The synthesis and SAR of this novel class of compounds are presented herein. © 2005 Elsevier Ltd. All rights reserved.

The adenosine receptors are G protein-coupled receptors consisting of four subtypes, A₁, A_{2A}, A_{2B}, and A₃-adenosine receptors.¹ Interaction of adenosine with its receptors initiates signal transduction pathways, including the adenylate cyclase effector system, which utilizes cAMP as a second messenger. While A1 and A₃ adenosine receptors (A₁-AdoR, A₃-AdoR) coupled with Gi proteins inhibit adenylate cyclase and lead to a decrease in intracellular levels of cAMP, the A_{2A}/ A_{2B} adenosine receptor-coupled Gs proteins stimulate adenylate cyclase and hence increase cAMP levels.² Studies have demonstrated the synergy between adenosine receptor activation and allergens in inducing mast cell degranulation.^{3,4} Studies have also shown that in activated human mast cells the A_{2B}-AdoR plays a major role in the facilitation of allergen-induced release of pre-formed mediators and cytokines.^{5–7} In addition, the selective A_{2B}-AdoR antagonist MRS1754 (1) inhibited activation of human mast cells induced by the non-selective AdoR agonist NECA. 3,4,8 Therefore, antagonists at the A_{2B} -AdoR would be expected to provide a novel approach to the management and treatment of asthma by reducing the responsiveness of the airway mast cells to allergen and hence lead to a reduction in airway inflammation and bronchial hyper-responsiveness.

Even though a number of high affinity A_{2B} -AdoR antagonists have been reported, only a few have shown high selectivity for the A_{2B} -AdoR relative to the A_1 , A_{2A} , and A_3 -AdoRs. 9,10 Our initial efforts to identify high affinity and selective A_{2B} -AdoR antagonists had led to the discovery of compound 2 that possesses a novel N-substituted pyrazole moiety in the 8-position of the xanthine ring (Fig. 1). 11,12 Even though compound 2 showed good affinity and selectivity for the A_{2B} -AdoR (vs. A_{2A} and A_3 -AdoRs) and modest selectivity versus the A_1 -AdoR, it contains an amide bond that constitutes a metabolic liability. 13 Therefore, we directed our efforts to the optimization of compound 2, with the goal of improving its A_{2B} -AdoR binding affinity and selectivity as well as enhancing its metabolic stability.

Amide bonds have been replaced with a wide variety of structural moieties in attempts to achieve metabolic

Keywords: Adenosine; Antagonists; Asthma.

^{*}Corresponding author. Tel.: +1 650 384 8217; fax: +1 650 858 0390; e-mail: elfatih.elzein@cvt.com

Figure 1. Structures of compounds 1 and 2; binding affinities and selectivity of compound 2 for the A_{2B} , A_1 , A_{2A} , and A_3 -AdoRs.

stability and oral bioavailability. Heterocyclic 5-membered rings such as 1,2,4-oxadiazoles, oxazoles, and isoxazoles have been extensively used as amide bond bioisosteres. ¹⁴ Accordingly, we replaced the amide bond in compound 2 with different oxadiazoles and isoxazoles.

5-(Chloromethyl)-3-substituted-phenyl-1,2,4-oxadiazole of general formula **III** was prepared as shown in Scheme 1.¹³ Treatment of substituted benzonitrile **I** with hydroxylamine hydrochloride afforded the amide oxime **II**, which was then reacted with chloroacetyl chloride in dichloroethane to afford **III**. The oxadiazole regio isomer of **III**, compound **VII**, was prepared by reacting the chloro-oxime amide **V** with a variety of commercially available benzoyl chlorides (Scheme 2).¹³

Isoxazoles of general formula **X** were obtained by condensing substituted 2-ethynylbenzene **VIII** with ethylchlorooximidoacetate in THF. The resulting ethyl 5-phenylisoxazole-3-carboxylate **IX** was then reduced using NaBH₄/EtOH and the primary alcohol was subsequently converted to the mesylate **X** (Scheme 3). 1-Benzyl-1*H*-

pyrazole-4-carboxylic acid 38 was prepared by direct alkylation of commercially available ethyl 1H-pyrazole-4-carboxylate 36 with benzyl chloride in acetone using K₂CO₃ as a base followed by ester hydrolysis (Scheme 4). Preparation of the key intermediate 1,3-dipropyl-8-(1-benzyl-pyrazol-4-yl)-1H-purine-2,6(3H,7H)-dione 41 is outlined in Scheme 5. 5,6-Diamino-1,3-dipropylpyrimidine 39 was synthesized following literature procedure. 15 Coupling of 39 with 1-benzyl-1*H*-pyrazole-4-carboxylic acid 38 using EDCI afforded intermediate 40, which was cyclized in NaOH to afford compound 41. Protection of the N-7 of compound 41 with a SEM group followed by debenzylation yielded our key intermediate 42. Compound 42 was then alkylated with oxadiazoles of general formulas III and VII, and also with isoxazoles of general formula X followed by SEM deprotection to afford our target molecules 3–35.

Binding affinities of compounds 3–35 for the A_{2B} , A_1 , A_{2A} , and A_3 -AdoRs were evaluated (Tables 1–3). As shown in Table 1, replacement of the amide bond in compound 2 with 1,2,4-oxadiazole resulted in compound 3 that displayed similar binding affinity for the A_{2B} -AdoR ($K_i = 19 \text{ nM}$) to compound 2. However, compound 3 showed 26-fold increased selectivity for the A_{2B} -AdoR versus the A_1 -AdoR and about 2-fold improved selectivity for the A_{2B} -AdoR versus the A_{2A} -AdoR relative to 2.

The unsubstituted phenyl analog **4** exhibited very high affinity ($K_i = 1 \text{ nM}$) and selectivity for the A_{2B} -AdoR versus A_1 , A_{2A} , and A_3 -AdoRs (A_1/A_{2B} , A_{2A}/A_{2B} , and A_3/A_{2B} selectivity ratios of 370, 1100, and 480, respectively). In fact, compound **4** was our most active and selective analog among the three classes of compounds we synthesized. While the 4-Cl-phenyl analog **5** had similar binding affinity ($K_i = 21 \text{ nM}$) to the 2-Cl analog **3**, it showed less selectivity for the A_{2B} -AdoR versus A_1 , A_{2A} , and A_3 -AdoRs relative to **3**. Introducing a stronger electron-withdrawing group (CF₃) in place of the 4-Cl group as in compound **6** resulted in 2-fold loss in

Scheme 1.

Scheme 2.

Scheme 4.

Scheme 5.

Table 1. Binding affinities of 3-phenyl-1,2,4-oxadiazole analogs 3-15 for the A2B, A1, A2A, and A3-AdoRs

Compound	R	$K_{\rm i}~({ m nM})^{ m a}$							
		$(A_{2B})^b$	$(A_1)^c$	$(A_{2A})^d$	$(A_3)^e$	A_1/A_{2B}	A_{2A}/A_{2B}	A ₃ /A _{2B}	
3	2-C1	19	2500	2500	490	130	130	25	
4	Н	1	370	1100	480	370	1100	480	
5	4-C1	21	740	1800	400	35	85	19	
6	$4-CF_3$	55	3300	>5000	1300	60	>90	23	
7	4-CN	18	1300	>5000	950	70	>277	53	
8	3-C1	32	652	>5000	490	20	>156	15	
9	3-CF ₃	42	3500	>5000	960	83	>119	22	
10	2-CF ₃	74	530	>5000	340	7	>67	4	
11	2-OCH ₃	82	1900	1600	410	23	19	5	
12	4-OCH ₃	106	3000	>5000	1500	28	>47	14	
13	3-OCH ₃	82	2200	>5000	600	26	>60	7	
14	4-CH ₃	54	2600	3000	8700	48	55	160	
15	3-CH ₃	128	1400	>5000	970	11	>39	8	
2		22	102	1500	1200	5	68	54	

^a 95% confidence limits were generally ±15% of the mean value.

binding affinity (6, $K_i = 55 \text{ nM}$). However, the 4-CN analog 7 showed affinity and selectivity for the A_{2B} -AdoR comparable to those of compound 5. In general, compounds that incorporated electron-withdrawing

groups in the phenyl ring displayed higher affinity and selectivity for the A_{2B} -AdoR relative to those having electron-donating substituents (e.g., 3 vs. 11, 5 vs. 12). The high binding affinity and selectivity of compound

^b Binding affinity for A_{2B}-AdoR was determined using HEK-A_{2B} cells with [³H]ZM241385 as the radioligand.

^c Binding affinity for A₁-AdoR was determined using CHO-A₁ cells with [³H]CPX as the radioligand.

^d Binding affinity for A_{2A}-AdoR was determined using HEK-A_{2A} cells with [³H]ZM241385 as the radioligand.

^e Binding affinity for A₃-AdoR was determined using CHO-A₃ cells with [¹²⁵I]AB-MECA as the radioligand.

Table 2. Binding affinities of 5-phenyl-1,2,4-oxadiazole analogs 16-26 for the A2B, A1, A2A, and A3-AdoRs

Compound	R	$K_{\rm i} ({ m nM})^{ m a}$							
		$(A_{2B})^b$	$(A_1)^c$	$(A_{2A})^d$	$(A_3)^e$	A_1/A_{2B}	A_{2A}/A_{2B}	A ₃ /A _{2B}	
16	Н	21	1000	1800	630	47	85	30	
17	2-C1	38	630	2500	330	16	65	9	
18	4-Cl	39	2900	>5000	>8300	74	>128	>213	
19	4-CN	14	570	>5000	640	40	>357	45	
20	$4-CF_3$	21	>6000	>5000	1300	>285	>238	61	
21	3-C1	134	3000	>5000	3000	22	>37	22	
22	$3-CF_3$	64	>6000	>5000	1800	>93	>78	27	
23	$2-CF_3$	100	1900	>5000	620	19	>50	6	
24	4-OCH ₃	123	3900	>5000	2300	32	>40	19	
25	3-OCH ₃	136	810	>5000	2000	6	>37	15	
26	2-OCH ₃	83	930	3400	>8300	11	40	>100	
2		22	102	1500	1200	5	68	54	

 $[^]a\,95\%$ confidence limits were generally $\pm15\%$ of the mean value.

Table 3. Binding affinities of 5-phenylisoxazole analogs 27–35 for the A_{2B}, A₁, A_{2A}, and A₃-AdoRs

Compound	R_1	$K_{\rm i} \left({\rm nM}\right)^{\rm a}$							
		$(A_{2B})^b$	$(A_1)^c$	$(A_{2A})^d$	$(A_3)^e$	A_1/A_{2B}	A_{2A}/A_{2B}	A ₃ /A _{2B}	
27	Н	14	1500	420	1800	107	30	128	
28	2-C1	111	>6000	2700	2300	>54	24	20	
29	4-C1	82	540	1200	3300	6	14	40	
30	$4-CF_3$	48	2300	1700	1200	48	35	25	
31	3-C1	163	4600	>5000	4400	28	>30	27	
32	$2-CF_3$	121	3700	>5000	4200	30	>41	34	
33	3 -OCH $_3$	131	3500	>5000	>5000	27	>38	>38	
34	4-OCH ₃	63	2000	>5000	3000	31	>79	48	
35	2-OCH ₃	195	3300	>5000	4900	16	>25	24	
2		22	100	1500	1200	5	68	54	

^a 95% confidence limits were generally ±15% of the mean value.

4 for the A_{2B} -AdoR suggest that in this 3-phenyl-1,2,4-oxadiazole class of compounds, unsubstituted phenyl ring is optimal for both A_{2B} -AdoR binding affinity and selectivity. The binding affinity and selectivity of 5-phenyl-1,2,4-oxadiazole class of compounds are shown in Table 2. Compound **16**, which is a 1,2,4-oxadiazole regio isomer of **4**, displayed 20-fold de-

creased A_{2B} -AdoR binding affinity relative to **4**. In addition, compound **16** was 7-, 12-, and 16-fold less selective for the A_{2B} -AdoR versus A_1 , A_{2A} , and A_3 -AdoRs, respectively, relative to **4**. Compound **17**, which is an oxadiazole regio isomer of **3**, showed a 2-fold decrease in A_{2B} -AdoR binding affinity ($K_i = 38 \text{ nM}$) and 8-fold less selectivity for the A_{2B} -AdoR versus the A_1 -AdoR

^b Binding affinity for A_{2B}-AdoR was determined using HEK-A_{2B} cells with [³H]ZM241385 as the radioligand.

^c Binding affinity for A₁-AdoR was determined using CHO-A₁ cells with [³H]CPX as the radioligand.

^d Binding affinity for A_{2A}-AdoR was determined using HEK-A_{2A} cells with [³H]ZM241385 as the radioligand.

^e Binding affinity for A₃-AdoR was determined using CHO-A₃ cells with [¹²⁵I]AB-MECA as the radioligand.

^b Binding affinity for A_{2B}-AdoR was determined using HEK-A_{2B} cells with [³H]ZM241385 as the radioligand.

^c Binding affinity for A₁-AdoR was determined using CHO-A₁ cells with [³H]CPX as the radioligand.

^d Binding affinity for A_{2A}-AdoR was determined using HEK-A_{2A} cells with [³H]ZM241385 as the radioligand.

^e Binding affinity for A₃-AdoR was determined using CHO-A₃ cells with [125I]AB-MECA as the radioligand.

relative to 3. Even though, the 4-Cl phenyl analog 18 showed 2-fold decreased A_{2B}-AdoR binding affinity $(K_i = 39 \text{ nM})$ than its oxadiazole regio isomer 5, it displayed more selectivity for the A_{2B}-AdoR versus other three receptor subtypes $(A_1/A_{2B}, A_{2A}/A_{2B}, and A_3/A_{2B})$ selectivity ratios of 74, >128, and >218, respectively). The 4-CF₃ analog, compound **20**, showed at least 2-fold increase in A_{2B} -AdoR binding affinity ($K_i = 21 \text{ nM}$) relative to its regio isomer 6. In addition, compound 20 showed much improved selectivity profile for the A_{2B}-AdoR relative to 6 (A₁/A_{2B}, A_{2A}/A_{2B}, and A₃/A_{2B} selectivity ratios of >285, >238, and 61, respectively). Unlike in the 3-phenyl-1,2,4-oxadiazole class of compounds (Table 1, where unsubstituted phenyl ring was optimal for both, binding affinity and selectivity for the A2B-AdoR) and in this series of 5-phenyl-1,2,4-oxadiazoles (Table 2), a strong electron-withdrawing group in the 4-position of the phenyl ring provided the most active and selective analog (compound 20). One could envision the 5-phenylisoxazole series (Table 3) as a direct analog of the 3-phenyl-1,2,4-oxadiazole series where the 4-nitrogen atom in the 3-phenyl-1,2,4-oxadiazole ring is isosterically replaced with a carbon atom. The isoxazole analog 30 showed 2-fold decreased A_{2B}-AdoR binding affinity ($K_i = 48 \text{ nM}$) relative to the oxadiazole analog 20. In addition, compound 30 displayed much lower selectivity for the A_{2B}-AdoR versus A₁, A_{2A}, and A₃-AdoRs relative to 20. A similar trend was observed when comparing the isoxazole analog 29 to the oxadiazole analog 18. In general, the 5-phenylisoxazole series was less active and selective for the A_{2B}-AdoR in comparison to the other two oxadiazole classes of compounds. It is noteworthy that some of these new analogs showed good oral bioavailability in rats. Compound 5, for instance, displayed 22% oral bioavailability in rats when dosed at 1 mg/Kg (in DMSO/ethanol/ PEG300/50 mM *n*-methylglucamine) (2.5:10:20:67.5) with AUC of 2330 ng h/mL and $t_{1/2}$ of 1.5 h.

In summary, we have discovered a novel class of A_{2B} -AdoR antagonists. Bioisosteric replacement of the amide bond in compound $\mathbf{2}$ with different heterocyclic 5-membered rings (1,2,4-oxadiazoles and isoxazoles) resulted in compounds with high affinity and selectivity for the A_{2B} -AdoR. Compound $\mathbf{4}$ is among the most active and selective A_{2B} -AdoR antagonist known to date. Considering the fact that only a few high affinity and selective A_{2B} -AdoR antagonists are available, this new series of compounds constitutes a significant addition to the field and might be useful as pharmacological tools. In addition, these new analogs may serve as leads to discover additional potent and selective A_{2B} -AdoR

antagonists that may have potential use as therapeutic agents for treatment of asthma.

References and notes

- Fredholm, B. B.; IJzerman, A. P.; Jacobson, K. A.; Klotz, K. N.; Linden, L. Pharmacol. Rev. 2001, 53, 527.
- Fredholm, B. B.; Abbraccio, M. P.; Burnstock, G.; Daly, J. W.; Harden, T. K.; Jacobson, K. A.; Leff, P.; Williams, M. Pharmacol. Rev. 1994, 46, 143.
- Kirschenbaum, A. S.; Hettinger, B.; Day, Y. J.; Gilfilian, A. M.; Metcalfe, D. D.; Kim, Y. C.; Linden, J.; Jacobson, K. A. J. Allergy Clin. Immunol. 2001, 107, S281.
- Meade, C. J.; Worrall, L.; Hayes, D.; Protin, U. Biochem. Pharmacol. 2002, 64, 317.
- 5. Feoktistov, I.; Biaggioni, I. J. Clin. Invest. 1995, 96, 1979.
- Hughes, P. J.; Holgate, S. T.; Church, M. K. Biochem. Pharmacol. 1984, 33, 3847.
- 7. Peachell, P. T.; Lichtenstein, L. M.; Scheimer, R. P. J. Pharmacol. Exp. Ther. 1991, 256, 717.
- 8. Feoktistov, I.; Garland, E. M.; Goldstein, A. E.; Zeng, D.; Belardinelli, L. *Biochem. Pharmacol.* **2001**, *62*, 1163.
- Volpini, R.; Costanzi, S.; Vittori, S.; Cristalli, G.; Koltz, K.-N. Curr. Top. Med. Chem. 2003, 3, 427.
- Baraldi, P. G.; Tabrizi, M. A.; Preti, D.; Bovero, A.; Romagnoli, R.; Fruttarolo, F.; Zaid, N. A.; Moorman, A. R.; Varani, A.; Gessi, S.; Merighi, S.; Borea, P. A. J. Med. Chem. 2004, 47, 1434.
- 11. Kalla, R.; Perry, T.; Elzein, E.; Li, X.; Varkhedkar, V.; Palle, V.; Ibrahim, P.; Xiao, D.; Zablocki, J. U.S. Patent 6825349, 2004.;
- Kalla, R.; Perry, T.; Elzein, E.; Palle, V.; Li, X.; Varkhedkar, V.; Maa, T.; Nguyen, M.; Wu, Y.; Maydanik, V.; Lustig, D.; Leung, K.; Zeng, D.; Zablocki, J. Abstracts of Papers, 227th ACS National Meeting, Anaheim, CA, Mar 28–Apr 1, 2004; MEDI-253.;
- 13. (a) In previous communications, we have shown that A_{2B} adenosine receptor antagonists containing an amide bond have less liver S9 metabolic stability. MRS-1754 (1), which contains an amide bond, is also metabolically unstable. In addition, we have successfully replaced the amide bond with oxazoles, isoxazoles, and oxadiazoles, and that resulted in compounds with enhanced metabolic stability; (b) Zablocki, J.; Kalla, R.; Perry, T.; Palle, V.; Varkhedkar, V.; Xiao, D.; Piscopio, A.; Maa, T.; Gimbel, A.; Hao, J.; Chu, N.; Leung, K.; Zeng, D. Bioorg. Med. Chem. Lett. 2005, 15, 609; (c) Elzein, E.; Ibrahim, P.; Koltun, D.; Rehder, K.; Shenk, K.; Marquart, T.; Jiang, B.; Li, X.; Natero, R.; Li, Y.; Nguyen, M.; Kerwar, S.; Chu, N.; Soohoo, D.; Hao, J.; Maydanik, V.; Lustig, D.; Zeng, D.; Leung, K.; Zablocki, J. Bioorg. Med. Chem. Lett. 2004, 14, 6017.
- Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147, and references therein.
- Daly, J. W.; Padgett, W.; Shamim, M. T.; Butts-Lamb, P.; Waters, J. J. Med. Chem. 1985, 28, 487.